Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Geosci Front ; 13(6): 101310, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2284377

ABSTRACT

Urban cemeteries are increasingly surrounded by areas of high residential density as urbanization continues world-wide. With increasing rates of mortality caused by the novel coronavirus, SARS-CoV-2, urban vertical cemeteries are experiencing interments at an unprecedented rate. Corpses interred in the 3rd to 5th layer of vertical urban cemeteries have the potential to contaminate large adjacent regions. The general objective of this manuscript is to analyze the reflectance of altimetry, normalized difference vegetation index (NDVI) and land surface temperature (LST) in the urban cemeteries and neighbouring areas of the City of Passo Fundo, Rio Grande do Sul, Brazil. It is assumed that the population residing in the vicinity of these cemeteries may be exposed to SARS-CoV-2 contamination through the displacement of microparticles carried by the wind as a corpse is placed in the burial niche or during the first several days of subsequent fluid and gas release through the process of decomposition. The reflectance analyses were performed utilizing Landsat 8 satellite images applied to altimetry, NDVI and LST, for hypothetical examination of possible displacement, transport and subsequent deposition of the SARS-CoV-2 virus. The results showed that two cemeteries within the city, cemeteries A and B could potentially transport SARS-CoV-2 of nanometric structure to neighboring residential areas through wind action. These two cemeteries are located at high relative altitudes in more densely populated regions of the city. The NDVI, which has been shown to control the proliferation of contaminants, proved to be insufficient in these areas, contributing to high LST values. Based on the results of this study, the formation and implementation of public policies that monitor urban cemeteries is suggested in areas that utilize vertical urban cemeteries in order to reduce the further spread of the SARS-CoV-2 virus.

2.
Environ Dev Sustain ; 24(9): 10728-10751, 2022.
Article in English | MEDLINE | ID: covidwho-1471833

ABSTRACT

The increasing mortality of COVID-19 can aggravate soil contamination by metals, harmful to the health of the population, requiring new projects for future cemeteries capable of mitigating these impacts to the environment, justifying the importance of studying the concentrations of metals in the soil of urban cemeteries. The paper analyzed the levels of metals in the soil of urban cemeteries in the City of Carazinho, in the state of Rio Grande do Sul, located in southern Brazil, considering the increase in deaths by COVID-19, for the purpose of future projects for cemeteries aimed at mitigating the impacts generated on the environment. The soils of the three urban cemeteries in Carazinho were sampled, with 5 internal and external points, with 3 repetitions at depths of 0-20 and 20-40 cm, adding 180 samples to measure the concentrations of Fe, Mn, Cu, Zn, Cr and Pb (g kg-1), considering the analytical sequence: (1) analysis in triplicate with mean deviation (RDS); (2) R2 of the analytical curve; (3) traceability of the pattern of each metal; (4) quantification limit of each metal (QL), with the performance of nitroperchloric digestion of the samples and the determinations of metals by flame modality atomic absorption spectrometry. Quantitative data on deaths by COVID-19 were analyzed by univariate modeling of time series, in the integrated autoregressive moving averages model. The results of this study were made available to fifteen architects, who attributed future solutions for environmentally sustainable cemeteries. The results showed high levels of copper (Cu) and iron (Fe) in the soil of the cemeteries studied. Considering the increase in deaths and subsequent burials per COVID-19 revealed a prediction for the death toll of 6,082,306 for June 9, 2022, it is assumed that metal contamination can reach even higher levels. To mitigate these levels of contamination by metals, 80% of the architect respondents expressed their preference for a vertical cemetery, with treatment of gases and effluents to mitigate environmental impacts.

3.
Geoscience Frontiers ; : 101279, 2021.
Article in English | ScienceDirect | ID: covidwho-1347612

ABSTRACT

The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engineering, when combined with appropriate technologies, allow for the possibility of reducing the impacts of the SARS-CoV-2 virus in the environment, including those of hospitals which are critical centers for healthcare. In this work, we build parametric 3D models to assess the possible circulation of the SARS-CoV-2 virus in the natural ventilation system of a hospital built to care infected patients during the COVID-19 pandemic. Building Information Modeling (BIM) was performed, generating 3D models of hospital environments utilizing Revit software for Autodesk CFD 2021. The evaluation considered dimensional analyses of 0°, 45°, 90° and 180°. The analysis of natural ventilation patterns on both internal and external surfaces and the distribution of windows in relation to the displacement dynamics of the SARS-CoV-2 virus through the air were considered. The results showed that in the external area of the hospital, the wind speed reached velocities up to 2.1 m/s when entering the building through open windows. In contact with the furniture, this value decreased to 0.78 m/s. In some internal isolation wards that house patients with COVID-19, areas that should be equipped with negative room pressure, air velocity was null. Our study provides insights into the possibility of SARS-CoV-2 contamination in internal hospital environments as well as external areas surrounding hospitals, both of which encounter high pedestrian traffic in cities worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL